Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

25 April 2024
 
  » arxiv » cond-mat/0410171

 Article overview



Diversity-induced synchronized oscillations in close-to-threshold excitable elements arranged on regular networks: effects of network topology
I. Vragovi’c ; E. Louis ; C. D. E. Boschi ; G. J. Ortega ;
Date 7 Oct 2004
Subject Disordered Systems and Neural Networks; Biological Physics; Cell Behavior | cond-mat.dis-nn physics.bio-ph q-bio.CB
Affiliation Departamento de Fisica Aplicada, Instituto Universitario de Materiales and Unidada Asociada CSIC-UA, Universidad de Alicante, Spain. INFM Research Unit of Bologna, Bologna, Italia. Departamento de Física, F.C.E.N. Universidad de Buenos Aires
AbstractThe question of how network topology influences emergent synchronized oscillations in excitable media is addressed. Coupled van der Pol-FitzHugh-Nagumo elements arranged either on regular rings or on clusters of the square lattice are investigated. Clustered and declustered rings are constructed to have the same number of next-nearest-neighbors (four) and a number of links twice that of nodes. The systems are chosen to be close-to-threshold, allowing global oscillations to be triggered by a weak diversity among the constituents that, by themselves, would be non-oscillating. The results clearly illustrate the crucial role played by network topology. In particular we found that network performance (oscillatory behavior and synchronization) is mainly determined by the network average path length and by the standard deviation of path lengths. The shorter the average path length and the smaller the standard deviation, the better the network performance. Local properties, as characterized by the clustering coefficient, are less important. In addition we comment on the mechanisms that sustain synchronized oscillations and on the transient times needed to reach these stationary regimes.
Source arXiv, cond-mat/0410171
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica