Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'500'096
Articles rated: 2609

18 April 2024
 
  » arxiv » 2009.00064

 Article overview


Finite and Infinite Matrix Product States for Gutzwiller Projected Mean-Field Wavefunctions
Gabriel Petrica ; Bo-Xiao Zheng ; Garnet Kin-Lic Chan ; Bryan K. Clark ;
Date 31 Aug 2020
AbstractMatrix product states (MPS) and ’dressed’ ground states of quadratic mean fields (e.g. Gutzwiller projected Slater Determinants) are both important classes of variational wave-functions. This latter class has played important roles in understanding superconductivity and quantum spin-liquids. We present a novel method to obtain both the finite and infinite MPS (iMPS) representation of the ground state of an arbitrary fermionic quadratic mean-field Hamiltonian, (which in the simplest case is a Slater determinant and in the most general case is a Pfaffian). We also show how to represent products of such states (e.g. determinants times Pfaffians). From this representation one can project to single occupancy and evaluate the entanglement spectra after Gutzwiller projection. We then obtain the MPS and iMPS representation of Gutzwiller projected mean-field states that arise from the variational slave-fermion approach to the $S=1$ Bilinear-Biquadratic (BLBQ) quantum spin chain. To accomplish this, we develop an approach to orthogonalize degenerate iMPS to find all the states in the degenerate ground-state manifold. We find the energies of the MPS and iMPS states match the variational energies closely indicating the method is accurate and there is minimal loss due to truncation error. We then present the first exploration of the entanglement spectra of projected slave-fermion states exploring their qualitative features and finding good qualitative agreement with the respective exact ground state spectra found from DMRG.
Source arXiv, 2009.00064
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica