Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'487'895
Articles rated: 2609

28 March 2024
 
  » arxiv » 2009.04477

 Article overview


Imaging phonon-mediated hydrodynamic flow in WTe2 with cryogenic quantum magnetometry
Uri Vool ; Assaf Hamo ; Georgios Varnavides ; Yaxian Wang ; Tony X. Zhou ; Nitesh Kumar ; Yuliya Dovzhenko ; Ziwei Qiu ; Christina A. C. Garcia ; Andrew T. Pierce ; Johannes Gooth ; Polina Anikeeva ; Claudia Felser ; Prineha Narang ; Amir Yacoby ;
Date 9 Sep 2020
AbstractIn the presence of strong interactions, electrons in condensed matter systems can behave hydrodynamically thereby exhibiting classical fluid phenomena such as vortices and Poiseuille flow. While in most conductors large screening effects minimize electron-electron interactions, hindering the search for possible hydrodynamic candidate materials, a new class of semimetals has recently been reported to exhibit strong interactions. In this work, we study the current flow in the layered semimetal tungsten ditelluride (WTe2) by imaging the local magnetic field above it using a nitrogen-vacancy (NV) defect in diamond. Our cryogenic scanning magnetometry system allows for temperature-resolved measurement with high sensitivity enabled by the long defect spin coherence. We directly measure the spatial current profile within WTe2 and find it differs substantially from the uniform profile of a Fermi liquid, indicating hydrodynamic flow. Furthermore, our temperature-resolved current profile measurements reveal an unexpected non-monotonic temperature dependence, with hydrodynamic effects strongest at ~20 K. We further elucidate this behavior via ab initio calculations of electron scattering mechanisms, which are used to extract a current profile using the electronic Boltzmann transport equation. These calculations show quantitative agreement with our measurements, capturing the non-monotonic temperature dependence. The combination of experimental and theoretical observations allows us to quantitatively infer the strength of electron-electron interactions in WTe2. We show these strong electron interactions cannot be explained by Coulomb repulsion alone and are predominantly phonon-mediated. This provides a promising avenue in the search for hydrodynamic flow and strong interactions in high carrier density materials.
Source arXiv, 2009.04477
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica