Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

25 April 2024
 
  » arxiv » 2009.04963

 Article overview



Thermally activated flow in models of amorphous solids
Marko Popović ; Tom W. J. de Geus ; Wencheng Ji ; Matthieu Wyart ;
Date 10 Sep 2020
AbstractAmorphous solids yield at a critical value $Sigma_c$ of the imposed stress $Sigma$ through a dynamical phase transition. While sharp in athermal systems, the presence of thermal fluctuations leads to the rounding of the transition and thermally activated flow even below $Sigma_c$. Here, we study the steady state thermal flow of amorphous solids using a mesoscopic elasto-plastic model. In the Hebraud-Lequex (HL) model we provide an analytical solution of the thermally activated flow at low temperature. We then propose a general scaling law that also describes the transition rounding. Finally, we find that the scaling law holds in numerical simulations of the HL model, a 2D elasto-plastic model, and in previously published molecular dynamics simulations of 2D Lennard-Jones glass.
Source arXiv, 2009.04963
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica