Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'503'724
Articles rated: 2609

23 April 2024
 
  » arxiv » 2009.14164

 Article overview


Determining the true mass of radial-velocity exoplanets with Gaia: 9 planet candidates in the brown-dwarf/stellar regime and 27 confirmed planets
Flavien Kiefer ; Guillaume Hébrard ; Alain Lecavelier ; Eder Martioli ; Shweta Dalal ; Alfred Vidal-Madjar ;
Date 29 Sep 2020
AbstractMass is one of the most important parameters for determining the true nature of an astronomical object. Yet, many published exoplanets lack a measurement of their true mass, in particular those detected thanks to radial velocity (RV) variations of their host star. For those, only the minimum mass, or $msin i$, is known, owing to the insensitivity of RVs to the inclination of the detected orbit compared to the plane-of-the-sky. The mass that is given in database is generally that of an assumed edge-on system ($sim$90$^circ$), but many other inclinations are possible, even extreme values closer to 0$^circ$ (face-on). In such case, the mass of the published object could be strongly underestimated by up to two orders of magnitude. In the present study, we use GASTON, a tool recently developed in Kiefer et al. (2019) & Kiefer (2019) to take advantage of the voluminous Gaia astrometric database, in order to constrain the inclination and true mass of several hundreds of published exoplanet candidates. We find 9 exoplanet candidates in the stellar or brown dwarf (BD) domain, among which 6 were never characterized. We show that 30 Ari B b, HD 141937 b, HD 148427 b, HD 6718 b, HIP 65891 b, and HD 16760 b have masses larger than 13.5 M$_ ext{J}$ at 3-$sigma$. We also confirm the planetary nature of 27 exoplanets among which HD 10180 c, d and g. Studying the orbital periods, eccentricities and host-star metallicities in the BD domain, we found distributions with respect to true masses consistent with other publications. The distribution of orbital periods shows of a void of BD detections below $sim$100 days, while eccentricity and metallicity distributions agree with a transition between BDs similar to planets and BDs similar to stars about 40-50 M$_ ext{J}$.
Source arXiv, 2009.14164
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica