Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'500'096
Articles rated: 2609

19 April 2024
 
  » arxiv » 2010.05679

 Article overview


Impermeable Inorganic Walls Sandwiching Photoactive Layer toward Inverted Perovskite Solar and Indoor-Photovoltaic Devices
Jie Xu ; Jun Xi ; Hua Dong ; Namyoung Ahn ; Zonglong Zhu ; Jinbo Chen ; Peizhou Li ; Xinyi zhu ; Jinfei Dai ; Ziyang Hu ; Bo Jiao ; Xun Hou ; Jingrui Li ; Zhaoxin Wu ;
Date 12 Oct 2020
AbstractInterfaces between the perovskite active layer and the charge-transport layers (CTLs) play a critical role in both efficiency and stability of halide-perovskite photovoltaics. One of the major concerns is that surface defects of perovskite could cause detrimental nonradiative recombination and material degradation. In this work, we addressed this challenging problem by inserting ultrathin alkali-fluoride (AF) films between the tri-cation lead-iodide perovskite layer and both CTLs. This bilateral inorganic walls strategy makes use of both physical-blocking and chemical-anchoring functionalities of the continuous, uniform and compact AF framework: on the one hand, the uniformly distributed alkali-iodine coordination at the perovskite-AF interfaces effectively suppresses the formation of iodine-vacancy defects at the surfaces and grain boundaries of the whole perovskite film, thus reducing the trap-assisted recombination at the perovskite-CTL interfaces and therewith the open-voltage loss; on the other hand, the impermeable AF buffer layers effectively prevent the bidirectional ion migration at the perovskite-CTLs interfaces even under harsh working conditions. As a result, a power-conversion efficiency (PCE) of 22.02% (certified efficiency 20.4%) with low open-voltage deficit (< 0.4V) was achieved for the low-temperature processed inverted planar perovskite solar cells. Exceptional operational stability (500 h, ISOS-L-2) and thermal stability (1000 h, ISOS-D-2) were obtained. Meanwhile, a 35.7% PCE was obtained under dim-light source (1000 lux white LED light) with the optimized device, which is among the best records in perovskite indoor photovoltaics.
Source arXiv, 2010.05679
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica