Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'503'724
Articles rated: 2609

23 April 2024
 
  » arxiv » 2011.07554

 Article overview


Three Party Quantum Networks Created by Quantum Cloning
Manish Kumar Shukla ; Minyi Huang ; Indranil Chakrabarty ; Junde Wu ;
Date 15 Nov 2020
AbstractWith progress in quantum technologies, the field of quantum networks has emerged as an important area of research. In the last few years, there has been substantial progress in understanding the correlations present in quantum networks. In this article, we study cloning as a prospective method to generate three party quantum networks which can be further used to create larger networks. We analyze various quantum network topologies that can be created using cloning transformations. This would be useful in the situations wherever the availability of entangled pairs is limited. In addition to that we focus on the problem of distinguishing networks created by cloning from those which are created by distributing independently generated entangled pairs. We find that there are several states which cannot be distinguished using the Finner inequalities in the standard way. For such states, we propose an extension to the existing Finner inequality for triangle networks by further increasing the number of observers from three to four or six depending on the network topology. This takes into account the additional correlations that exist in the case of cloned networks. In the last part of the article we have used tripartite mutual information to distinguish cloned networks from networks created by independent sources and have further used squashed entanglement as a measure to quantify the amount of dependence in the cloned networks.
Source arXiv, 2011.07554
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica