Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'488'730
Articles rated: 2609

29 March 2024
 
  » arxiv » 2011.13605

 Article overview


Deep Extragalactic VIsible Legacy Survey (DEVILS): SED Fitting in the D10-COSMOS Field and the Evolution of the Stellar Mass Function and SFR-$M_star$ relation
Jessica E. Thorne ; Aaron. S. G. Robotham ; Luke J. M. Davies ; Sabine Bellstedt ; Simon P. Driver ; Matias Bravo ; Malcolm N. Bremer ; Benne W. Holwerda ; Andrew M. Hopkins ; Claudia del P. Lagos ; Steven Phillipps ; Malgorzata Siudek ; Edward N. Taylor ; Angus H. Wright ;
Date 27 Nov 2020
AbstractWe present catalogues of stellar masses, star formation rates, and ancillary stellar population parameters for galaxies spanning $0<z<9$ from the Deep Extragalactic VIsible Legacy Survey (DEVILS). DEVILS is a deep spectroscopic redshift survey with very high completeness, covering several premier deep fields including COSMOS (D10). Our stellar mass and star formation rate estimates are self-consistently derived using the spectral energy distribution (SED) modeling code ProSpect, using well-motivated parameterisations for dust attenuation, star formation histories, and metallicity evolution. We show how these improvements, and especially our physically motivated assumptions about metallicity evolution, have an appreciable systematic effect on the inferred stellar masses, at the level of $sim$0.2 dex. To illustrate the scientific value of these data, we map the evolving galaxy stellar mass function (SMF) for $0<z<5$ and the SFR-$M_star$ relation for $0<z<9$. In agreement with past studies, we find that most of the evolution in the SMF is driven by the characteristic density parameter, with little evolution in the characteristic mass and low-mass slopes. Where the SFR-$M_star$ relation is indistinguishable from a power-law at $z>2.6$, we see evidence of a bend in the relation at low redshifts ($z<0.45$). This suggests evolution in both the normalisation and shape of the SFR-$M_star$ relation since cosmic noon. It is significant that we only clearly see this bend when combining our new DEVILS measurements with consistently derived values for lower redshift galaxies from the Galaxy And Mass Assembly (GAMA) survey: this shows the power of having consistent treatment for galaxies at all redshifts.
Source arXiv, 2011.13605
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica