Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

25 April 2024
 
  » arxiv » physics/0410022

 Article overview



Design of a Quantum Source of High-Frequency Gravitational Waves (HFGW) and Test Methodology
Giorgio Fontana ;
Date 4 Oct 2004
Subject General Physics | physics.gen-ph
AbstractThe generation of High-Frequency Gravitational Waves (HFGW) has been identified as the required breakthrough that will lead to new forms of space propulsion. Many techniques have been devised to generate HFGW, but most of them exhibit marginal efficiency, therefore the power emitted in form of gravitational waves (GW) is orders of magnitude lower than the input power. The gravitational wave counterpart of the LASER, termed Gravitational-wave LASER or "GASER" is the quantum approach to the efficient generation of gravitational waves. Electrons, protons, muons, etc, all have charge and mass, if accelerated they usually lose energy through the very fast electric and magnetic channels, this causes a negligible emission through the gravitational channel. Quantum systems can be engineered to forbid electric and magnetic transitions, therefore the gravitational spin-2 transitions can take place. A class of active materials, suitable for making a GASER based on electronic transitions in the solid state, is identified along with their relevant physical properties. Means for creating coherence and population inversion and means to increase the emission probability are described. The expected performances of the device are derived from quantum gravitational theories. Additional properties of the active materials are considered to enforce the theoretical foundation of the device. A proof-of-concept device, operating at about 1 THz, is described. Experiments are proposed as a natural starting point of the research.
Source arXiv, physics/0410022
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica