forgot password?
register here
Research articles
  search articles
  reviews guidelines
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
Members: 3088
Articles: 2'127'070
Articles rated: 2588

25 October 2021
  » arxiv » quant-ph/0404156

 Article overview

Unknown Quantum States and Operations, a Bayesian View
Christopher A. Fuchs ; Ruediger Schack ;
Date 27 Apr 2004
Subject quant-ph
AbstractThe classical de Finetti theorem provides an operational definition of the concept of an unknown probability in Bayesian probability theory, where probabilities are taken to be degrees of belief instead of objective states of nature. In this paper, we motivate and review two results that generalize de Finetti’s theorem to the quantum mechanical setting: Namely a de Finetti theorem for quantum states and a de Finetti theorem for quantum operations. The quantum-state theorem, in a closely analogous fashion to the original de Finetti theorem, deals with exchangeable density-operator assignments and provides an operational definition of the concept of an "unknown quantum state" in quantum-state tomography. Similarly, the quantum-operation theorem gives an operational definition of an "unknown quantum operation" in quantum-process tomography. These results are especially important for a Bayesian interpretation of quantum mechanics, where quantum states and (at least some) quantum operations are taken to be states of belief rather than states of nature.
Source arXiv, quant-ph/0404156
Services Forum | Review | PDF | Favorites   
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
of broad interest:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser CCBot/2.0 (
» my Online CV
» Free

News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2021 - Scimetrica