Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

25 April 2024
 
  » arxiv » quant-ph/0410090

 Article overview



Local versus non-local information in quantum information theory: formalism and phenomena
Michal Horodecki ; Pawel Horodecki ; Ryszard Horodecki ; Jonathan Oppenheim ; Aditi Sen De ; Ujjwal Sen ; Barbara Synak ;
Date 12 Oct 2004
Subject quant-ph
AbstractIn spite of many results in quantum information theory, the complex nature of compound systems is far from being clear. In general the information is a mixture of local, and non-local ("quantum") information. To make this point more clear, we develop and investigate the quantum information processing paradigm in which parties sharing a multipartite state distill local information. The amount of information which is lost because the parties must use a classical communication channel is the deficit. This scheme can be viewed as complementary to the notion of distilling entanglement. After reviewing the paradigm, we show that the upper bound for the deficit is given by the relative entropy distance to so-called psuedo-classically correlated states; the lower bound is the relative entropy of entanglement. This implies, in particular, that any entangled state is informationally nonlocal i.e. has nonzero deficit. We also apply the paradigm to defining the thermodynamical cost of erasing entanglement. We show the cost is bounded from below by relative entropy of entanglement. We demonstrate the existence of several other non-local phenomena. For example,we prove the existence of a form of non-locality without entanglement and with distinguishability. We analyze the deficit for several classes of multipartite pure states and obtain that in contrast to the GHZ state, the Aharonov state is extremely nonlocal (and in fact can be thought of as quasi-nonlocalisable). We also show that there do not exist states, for which the deficit is strictly equal to the whole informational content (bound local information). We then discuss complementary features of information in distributed quantum systems. Finally we discuss the physical and theoretical meaning of the results and pose many open questions.
Source arXiv, quant-ph/0410090
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica