forgot password?
register here
Research articles
  search articles
  reviews guidelines
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
Members: 3015
Articles: 2'084'010
Articles rated: 2587

18 June 2021
  » arxiv » math.NT/0403271

 Article overview

On m-covers and m-systems
Zhi-Wei Sun ;
Date 16 Mar 2004
Subject Number Theory; Combinatorics MSC-class: 11B25; 05A05; 11A07; 11B75; 11D68 | math.NT math.CO
AbstractLet A={a_s(mod n_s)}_{s=0}^k be a system of residue classes. With the help of cyclotomic fields we obtain a theorem which unifies several previously known results concerning system A. In particular, we show that if every integer lies in more than m=[sum_{s=1}^k 1/n_s] members of A, then for any a=0,1,2,... there are at least binom{m}{[a/n_0]} subsets I of {1,...,k} with sum_{s in I}1/n_s=a/n_0. We also characterize when any integer lies in at most m members of A, where m is a fixed positive integer.
Source arXiv, math.NT/0403271
Services Forum | Review | PDF | Favorites   
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
of broad interest:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser CCBot/2.0 (
» my Online CV
» Free

News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2021 - Scimetrica