Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'501'711
Articles rated: 2609

20 April 2024
 
  » arxiv » 2205.12286

 Article overview


Modelling Populations of Kilonovae
Christian N. Setzer ; Hiranya V. Peiris ; Oleg Korobkin ; Stephan Rosswog ;
Date 24 May 2022
AbstractThe 2017 detection of a kilonova coincident with gravitational-wave emission has identified neutron star mergers as the major source of the heaviest elements, and dramatically constrained alternative theories of gravity. Observing a population of such sources has the potential to transform cosmology, nuclear physics, and astrophysics. However, with only one confident detection currently available, modelling the diversity of signals expected from such a population requires improved theoretical understanding. In particular, models which are quick to evaluate, and are calibrated with more detailed multi-physics simulations, are needed to design observational strategies for kilonovae detection, and to obtain rapid-response interpretations of new observations. We use grey-opacity models to construct populations of kilonovae, spanning ejecta parameters predicted by numerical simulations. Our modelling focuses on wavelengths relevant for upcoming optical surveys, such as the Rubin Observatory Legacy Survey of Space and Time (LSST). In these simulations, we implement heating rates that are based on nuclear reaction network calculations. We create a Gaussian-process emulator for kilonova grey opacities, calibrated with detailed radiative transfer simulations. Using recent fits to numerical relativity simulations, we predict how the ejecta parameters from BNS mergers shape the population of kilonovae, accounting for the viewing-angle dependence. Our simulated population of binary neutron star (BNS) mergers produce peak i-band absolute magnitudes $-17 leq M_i leq -11$. A comparison with detailed radiative transfer calculations indicates that further improvements are needed to accurately reproduce spectral shapes over the full light curve evolution.
Source arXiv, 2205.12286
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica