Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'585
Articles rated: 2609

24 April 2024
 
  » arxiv » q-bio.CB/0408001

 Article overview



Simulating the Impact of a Molecular 'Decision-Process' on Cellular Phenotype and Multicellular Patterns in Brain Tumors
Chaitanya Athale ; Yuri Mansury ; Thomas S. Deisboeck ;
Date 30 Jul 2004
Journal Journal of Theoretical Biology, Vol. 233, Issue 4 , 21 April 2005, Pages 469-481 DOI: 10.1016/j.jtbi.2004.10.019
Subject Cell Behavior | q-bio.CB
AbstractExperimental evidence indicates that human brain cancer cells proliferate or migrate, yet do not display both phenotypes at the same time. Here, we present a novel computational model simulating this cellular decision-process leading up to either phenotype based on a molecular interaction network of genes and proteins. The model’s regulatory network consists of the epidermal growth factor receptor (EGFR), its ligand transforming growth factor-a (TGFa), the downstream enzyme phospholipaseC-gamma (PLCg) and a mitosis-associated response pathway. This network is activated by autocrine TGFa secretion, and the EGFR-dependent downstream signaling this step triggers, as well as modulated by an extrinsic nutritive glucose gradient. Employing a framework of mass action kinetics within a multiscale agent-based environment, we analyze both the emergent multicellular behavior of tumor growth and the single-cell molecular profiles that change over time and space. Our results show that one can indeed simulate the dichotomy between cell migration and proliferation based solely on an EGFR decision network. It turns out that these behavioral decisions on the single cell level impact the spatial dynamics of the entire cancerous system. Furthermore, the simulation results yield intriguing experimentally testable hypotheses also on the sub-cellular level such as spatial cytosolic polarization of PLCg towards an extrinsic chemotactic gradient. Implications of these results for future works, both on the modeling and experimental side are discussed.
Source arXiv, q-bio.CB/0408001
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica