Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'585
Articles rated: 2609

24 April 2024
 
  » arxiv » physics/9612017

 Article overview



Fluid Models for Kinetic Effects on Coherent Nonlinear Alfven Waves. I. Fundamental Theory
M.V. Medvedev ; P.H. Diamond ;
Date 31 Dec 1996
Journal Phys. Plasmas, v.3, p.863 (1996)
Subject Plasma Physics; Space Physics; Adaptation and Self-Organizing Systems | physics.plasm-ph adap-org astro-ph nlin.AO physics.space-ph
AbstractCollisionless regime kinetic models for coherent nonlinear Alfven wave dynamics are studied using fluid moment equations with an approximate closure anzatz. Resonant particle effects are modelled by incorporating an additional term representing dissipation akin to parallel heat conduction. Unlike collisional dissipation, parallel heat conduction is presented by an integral operator. The modified derivative nonlinear Schrodinger equation thus has a spatially nonlocal nonlinear term describing the long-time evolution of the envelope of parallel-propagating Alfven waves, as well. Coefficients in the nonlinear terms are free of the 1/(1-beta) singularity usually encountered in previous analyses, and have very a simple form which clarifies the physical processes governing the large amplitude Alfvenic nonlinear dynamics. The nonlinearity appears via coupling of an Alfvenic mode to a kinetic ion-acoustic mode. Damping of the nonlinear Alfven wave appears via strong Landau damping of the ion-acoustic wave when the electron-to-ion temperature ratio is close to unity. For a (slightly) obliquely propagating wave, there are finite Larmor radius corrections in the dynamical equation. This effect depends on the angle of wave propagation relative to B_0 and vanishes for the limit of strictly parallel propagation. Explicit magnetic perturbation envelope equations amenable to further analysis and numerical solution are obtained. Implications of these models for collisionless shock dynamics are discussed.
Source arXiv, physics/9612017
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica