forgot password?
register here
Research articles
  search articles
  reviews guidelines
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
Members: 3525
Articles: 2'322'996
Articles rated: 2602

31 March 2023
  » arxiv » 2210.02530

 Article overview

Fractional Statistics
Martin Greiter ; Frank Wilczek ;
Date 5 Oct 2022
AbstractThe quantum-mechanical description of assemblies of particles whose motion is confined to two (or one) spatial dimensions offers many possibilities that are distinct from bosons and fermions. We call such particles anyons. The simplest anyons are parameterized by an angular phase parameter $ heta$. $ heta = 0, pi$ correspond to bosons and fermions respectively; at intermediate values we say that we have fractional statistics. In two dimensions, $ heta$ describes the phase acquired by the wave function as two anyons wind around one another counterclockwise. It generates a shift in the allowed values for the relative angular momentum. Composites of localized electric charge and magnetic flux associated with an abelian U(1) gauge group realize this behavior. More complex charge-flux constructions can involve non-abelian and product groups acting on a spectrum of allowed charges and fluxes, giving rise to nonabelian and mutual statistics. Interchanges of non-abelian anyons implement unitary transformations of the wave function within an emergent space of internal states. Anyons of all kinds are described by quantum field theories that include Chern--Simons terms. The crossings of one-dimensional anyons on a ring are uni-directional, such that a fractional phase $ heta$ acquired upon interchange gives rise to fractional shifts in the relative momenta between the anyons. The quasiparticle excitations of fractional quantum Hall states have long been predicted to include anyons. Recently the anyon behavior predicted for quasiparticles in the $ u = 1/3$ fractional quantum Hall state has been observed both in scattering and in interferometric experiments. Excitations within designed systems, notably including superconducting circuits, can exhibit anyon behavior. Such systems are being developed for possible use in quantum information processing.
Source arXiv, 2210.02530
Services Forum | Review | PDF | Favorites   
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
of broad interest:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser CCBot/2.0 (
» my Online CV
» Free

News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2023 - Scimetrica