Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

25 April 2024
 
  » arxiv » astro-ph/0503577

 Article overview



The Effects of Clumping on Derived Abundances in H II Regions
John S. Mathis ; Kenneth Wood ;
Date 26 Mar 2005
Journal Mon.Not.Roy.Astron.Soc. 360 (2005) 227-235
Subject astro-ph
Affiliation The University of Wisconsin-Madison, University of St. Andrews
AbstractWe have compared Monte Carlo photoionization models of H II regions with a uniform density distribution with models with the same central stars and chemical compositions but with 3-D hierarchical clumps. We compare the abundances of He, N, O, Ne, and S obtained from emission line strengths and [O III] and [N II] temperatures to those in our models. We consider stellar temperatures in the range 37.5 -- 45kK and ionizing luminosities from 10^{48} to 10^{51} photons/s. Clumped models have different ionic abundances than uniform. For hot stars, He^0/He^+ is 2 -- 3%, much larger than with uniform models. This amount of He I is independent of metallicity and so impacts the determination of the primordial abundance of He. The total abundances of O, Ne, and S obtained by the usual methods of analysis, using T([OIII) for high stages of ionization and T([NII]) for low, are about as accurate for clumped models as for uniform and within about 20% of the true values. If T([OIII]) is used for analyzing all ions, the derived (O/H) is 40 to 60% too large for cool stars but is good for hot stars. Uniform models have similar errors, so the clumping does not change the accuracy of abundance analysis. The physical causes of the ionic abundance errors are present in real nebulae. In clumped models, helium ionizing radiation from zones of high ionization (low He^0 and low UV opacity) can penetrate nearby regions near the edge of the ionized zone. This effect allows He^0 to absorb more stellar photons than in uniform or radially symmetrical geometries. In turn, these absorptions compete with O+, etc., for those energetic stellar photons.
Source arXiv, astro-ph/0503577
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica