Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

25 April 2024
 
  » arxiv » astro-ph/0504038

 Article overview



The First Generation of Star-Forming Haloes
Darren Reed ; Richard Bower ; Carlos S. Frenk ; Liang Gao ; Adrian Jenkins ; Tom Theuns Simon D. M. White ;
Date 4 Apr 2005
Subject astro-ph
Affiliation1,3) Simon D. M. White , ( ICC-Durham, MPA-Garching, Antwerp
AbstractWe model gas cooling in high-resolution N-body simulations in order to investigate the formation of the first generation of stars. We follow a region of a LCDM universe especially selected to contain a rich cluster by the present day. The properties of the dark haloes that form in these sub-solar mass resolution simulations are presented in a companion paper by Gao et al. The first gas clouds able to cool by molecular hydrogen line emission collapse at extremely high redshift, z ~ 47, when the mass of the dark halo is 2.4 x 10^5 Msun/h. By z ~ 30, a substantial population of haloes are capable of undergoing molecular hydrogen cooling although their ability to form stars is dependent on the efficiency of feedback processes such as dissociating Lyman-Werner radiation. The mass of the main halo grows extremely rapidly and, by z ~ 36, its virial temperature has reached 10^4K, at which point gas cooling becomes dominated by more effective atomic line processes. By z ~ 30, a small ``group’’ of galaxies will have formed unless prevented from doing so by feedback processes. By this redshift, massive population III stars are able to ionise gas well beyond their own host halo and neighbouring HII regions can percolate to form an ionized superbubble. Such patches would be too widely separated to contribute significantly to reionisation at this time. The large number density of early cooling haloes in the pre-reionised universe raises the exciting prospect that this ultra-early generation of stars may be observable as gamma-ray bursts or supernovae.
Source arXiv, astro-ph/0504038
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica