Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'503'724
Articles rated: 2609

24 April 2024
 
  » arxiv » astro-ph/0504062

 Article overview


Relativistic r-modes and Shear viscosity: regularizing the continuous spectrum
J.A. Pons ; L. Gualtieri ; J.A. Miralles ; V. Ferrari ;
Date 4 Apr 2005
Journal Mon.Not.Roy.Astron.Soc. 363 (2005) 121-130
Subject astro-ph gr-qc
AbstractWithin a fully relativistic framework, we derive and solve numerically the perturbation equations of relativistic stars, including the stresses produced by a non-vanishing shear viscosity in the stress-energy tensor. With this approach, the real and imaginary parts of the frequency of the modes are consistently obtained. We find that, approaching the inviscid limit from the finite viscosity case, the continuous spectrum is regularized and we can calculate the quasi-normal modes for stellar models that do not admit solutions at first order in perturbation theory when the coupling between the polar and axial perturbations is neglected. The viscous damping time is found to agree within factor 2 with the usual estimate obtained by using the eigenfunctions of the inviscid limit and some approximation for the energy dissipation integrals. We find that the frequencies and viscous damping times for relativistic $r-$modes lie between the Newtonian and Cowling results. We compare the results obtained with homogeneous, polytropic and realistic equations of state and find that the frequencies depend only on the rotation rate and on the compactness parameter (M/R), being almost independent of the equation of state. Our numerical results for realistic neutron stars give viscous damping times with the same dependence on mass and radius as previously estimated, but systematically larger of about 60%.
Source arXiv, astro-ph/0504062
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica