Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'487'895
Articles rated: 2609

29 March 2024
 
  » arxiv » astro-ph/0504511

 Article overview


Magnetically-Dominated Accretion Flows (MDAFs) and Jet Production in the Low/Hard STate
David Meier ;
Date 22 Apr 2005
Subject astro-ph
AbstractIn this paper I propose that the inner part of a black hole accretion inflow ($< 100 r_{g}$) may enter a magnetically-dominated, magnetosphere-like phase in which the strong, well-ordered fields play a more important role than weak, turbulent fields. In the low/hard state this flow is interior to the standard ADAF usually invoked to explain the observed hot, optically thin emission. Preliminary solutions for these new MDAFs are presented. Time-dependent X-ray and radio observations give considerable insight into these processes, and a new interpretation of the X-ray power spectrum (as arising from many disk radii) may be in order. While an evaporative ADAF model explains the noise power above 0.01 Hz, an inner MDAF is needed to explain the high frequency cutoff near 1 Hz, the presence of a QPO, and the production of a jet. The MDAF scenario also is consistent with the data-based, phemonenological models presented at this meeting by several authors.
Source arXiv, astro-ph/0504511
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica