Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

25 April 2024
 
  » arxiv » astro-ph/0505370

 Article overview



A Supernova Factory in Mrk 273?
M. Bondi ; M-A. Perez-Torres ; D. Dallacasa ; T.W.B. Muxlow ;
Date 18 May 2005
Journal Mon.Not.Roy.Astron.Soc. 361 (2005) 748-752
Subject astro-ph
Affiliation INAF-IRA, Bologna, Italy, Instituto de Astrofisica de Andalucia CSIC, Granada, Spain, Dipartimento di Astronomia, Universita` di Bologna, Italy, Jodrell Bank Observatory, Macclesfield, U.K
AbstractWe report on 1.6 and 5.0 GHz observations of the ultraluminous infrared galaxy (ULIRG) Mrk 273, using the European VLBI Network (EVN) and the Multi-Element Radio-Linked Interferometer Network (MERLIN). We also make use of published 1.4 GHz VLBA observations of Mrk 273 by Carilli & Taylor (2000). Our 5 GHz images have a maximum resolution of 5-10 mas, which corresponds to linear resolutions of 3.5-7 pc at the distance of Mrk 273, and are the most sensitive high-resolution radio observations yet made of this ULIRG. Component N1, often pinpointed as a possible AGN, displays a steep spectral index ($alpha = 1.2 pm 0.1; S_ u propto u^{-alpha}$); hence it is very difficult to reconcile with N1 being an AGN, and rather suggests that the compact nonthermal radio emission is produced by an extremely high luminous individual radio supernova (RSN), or a combination of unresolved emission from nested supernova remnants (SNR), luminous RSNe, or both. Component N2 is partly resolved out into several compact radio sources --none of which clearly dominates-- and a region of extended emission about 30 pc in size. The integrated spectral index of this region is flat ($alpha = 0.15 pm 0.1$), which can be interpreted as due to a superposition of several unresolved components, e.g., RSNe or SNRs, whose radio emission peaks at different frequencies and is partially free-free absorbed. The overall extended radio emission from component N is typical of nonthermal, optically thin radio emission ($alpha = 0.8 pm 0.1$), and its 1.4 GHz luminosity ($L_{1.4 m GHz} = (2.2 pm 0.1) imes 10^{23} $ WHz$^{-1}$) is consistent with being produced by relativistic electrons diffused away from supernova remnants in an outburst.
Source arXiv, astro-ph/0505370
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica