Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'487'895
Articles rated: 2609

28 March 2024
 
  » arxiv » astro-ph/0507079

 Article overview


Planetary Detection Efficiency of the Magnification 3000 Microlensing Event OGLE-2004-BLG-343
Subo Dong ; D.L. DePoy ; B.S. Gaudi ; A. Gould ; C. Han ; B.-G. Park ; R.W. Pogge ; A. Udalski ; O. Szewczyk ; M. Kubiak ; M.K. Szymanski ; G. Pietrzynski ; I. Soszynski ; L. Wyrzykowski ; K. Zebrun ;
Date 5 Jul 2005
Subject astro-ph
AffiliationThe microFUN Collaboration), A. Udalski, O. Szewczyk, M. Kubiak, M.K. Szymanski, G. Pietrzynski, I. Soszynski, L. Wyrzykowski, K. Zebrun (The OGLE Collaboration
AbstractOGLE-2004-BLG-343 was a microlensing event with peak magnification A_{max}=3000+/-1100, by far the highest-magnification event ever analyzed and hence potentially extremely sensitive to planets orbiting the lens star. Due to human error, intensive monitoring did not begin until 43 minutes after peak, at which point the magnification had fallen to A~1200, still by far the highest ever observed. As the light curve does not show significant deviations due to a planet, we place upper limits on the presence of such planets by extending the method of Yoo et al. (2004b), which combines light-curve analysis with priors from a Galactic model of the source and lens populations, to take account of finite-source effects. This is the first event so analyzed for which finite-source effects are important, and hence we develop two new techniques for evaluating these effects. Somewhat surprisingly, we find that OGLE-2004-BLG-343 is no more sensitive to planets than two previously analyzed events with A_{max}~100, despite the fact that it was observed at ~12 times higher magnification. However, we show that had the event been observed over its peak, it would have been sensitive to almost all Neptune-mass planets over a factor of 5 of projected separation and even would have had some sensitivity to Earth-mass planets. This shows that some microlensing events being detected in current experiments are sensitive to very low-mass planets.
Source arXiv, astro-ph/0507079
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica