Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'501'711
Articles rated: 2609

20 April 2024
 
  » arxiv » astro-ph/0510539

 Article overview


Contraction of Dark Matter Halos in Response to Condensation of Baryons
Oleg Y. Gnedin ;
Date 19 Oct 2005
AbstractThe cooling of baryons in the centers of dark matter halos leads to a more concentrated dark matter distribution. This effect has traditionally been calculated using the model of adiabatic contraction, which assumes spherical symmetry, while in hierarchical formation scenarios halos grow via multiple violent mergers. We test the adiabatic contraction model in high-resolution cosmological simulations and find that the dissipation of gas indeed increases the density of dark matter and steepens its radial profile compared to the case without cooling. Although the standard model systematically overpredicts the increase of dark matter density, a simple modification of the assumed invariant from M(r)r to M()r, where is the orbit-averaged particle position, reproduces the simulated profiles within 10%.
Source arXiv, astro-ph/0510539
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica