Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'503'724
Articles rated: 2609

23 April 2024
 
  » arxiv » cond-mat/0501760

 Article overview


Proof of the local REM conjecture for number partitioning I: Constant energy scales
Christian Borgs ; Jennifer Chayes ; Stephan Mertens ; Chandra Nair ;
Date 31 Dec 2004
Subject Disordered Systems and Neural Networks; Statistical Mechanics; Mathematical Physics; Probability | cond-mat.dis-nn cond-mat.stat-mech math-ph math.MP math.PR
AbstractThe number partitioning problem is a classic problem of combinatorial optimization in which a set of $n$ numbers is partitioned into two subsets such that the sum of the numbers in one subset is as close as possible to the sum of the numbers in the other set. When the $n$ numbers are i.i.d. variables drawn from some distribution, the partitioning problem turns out to be equivalent to a mean-field antiferromagnetic Ising spin glass. In the spin glass representation, it is natural to define energies -- corresponding to the costs of the partitions, and overlaps -- corresponding to the correlations between partitions. Although the energy levels of this model are {em a priori} highly correlated, a surprising recent conjecture asserts that the energy spectrum of number partitioning is locally that of a random energy model (REM): the spacings between nearby energy levels are uncorrelated. In other words, the properly scaled energies converge to a Poisson process. The conjecture also asserts that the corresponding spin configurations are uncorrelated, indicating vanishing overlaps in the spin glass representation. In this paper, we prove these two claims, collectively known as the local REM conjecture.
Source arXiv, cond-mat/0501760
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica