Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'503'724
Articles rated: 2609

24 April 2024
 
  » arxiv » cond-mat/0502219

 Article overview


Low temperature dynamics of kinks on Ising interfaces
Alain Karma ; Alexander E. Lobkovsky ;
Date 8 Feb 2005
Journal Phys. Rev. E, vol 71, no. 3 (2005)
Subject Statistical Mechanics | cond-mat.stat-mech
AffiliationNortheastern University) and Alexander E. Lobkovsky (MIT
AbstractThe anisotropic motion of an interface driven by its intrinsic curvature or by an external field is investigated in the context of the kinetic Ising model in both two and three dimensions. We derive in two dimensions (2d) a continuum evolution equation for the density of kinks by a time-dependent and nonlocal mapping to the asymmetric exclusion process. Whereas kinks execute random walks biased by the external field and pile up vertically on the physical 2d lattice, then execute hard-core biased random walks on a transformed 1d lattice. Their density obeys a nonlinear diffusion equation which can be transformed into the standard expression for the interface velocity v = M[(gamma + gamma’’)kappa + H]$, where M, gamma + gamma’’, and kappa are the interface mobility, stiffness, and curvature, respectively. In 3d, we obtain the velocity of a curved interface near the <100> orientation from an analysis of the self-similar evolution of 2d shrinking terraces. We show that this velocity is consistent with the one predicted from the 3d tensorial generalization of the law for anisotropic curvature-driven motion. In this generalization, both the interface stiffness tensor and the curvature tensor are singular at the <100> orientation. However, their product, which determines the interface velocity, is smooth. In addition, we illustrate how this kink-based kinetic description provides a useful framework for studying more complex situations by modeling the effect of immobile dilute impurities.
Source arXiv, cond-mat/0502219
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica