Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'501'711
Articles rated: 2609

20 April 2024
 
  » arxiv » cond-mat/0508278

 Article overview


Inelastic cotunneling induced decoherence and relaxation, charge and spin currents in an interacting quantum dot under a magnetic field
Bing Dong ; Norman J.M. Horing ; H.L. Cui ;
Date 11 Aug 2005
Journal Phys. Rev. B 72, 165326 (2005)
AbstractWe present a theoretical analysis of several aspects of nonequilibirum cotunneling through a strong Coulomb-blockaded quantum dot (QD) subject to a finite magnetic field in the weak coupling limit. We carry this out by developing a generic quantum Heisenberg-Langevin equation approach leading to a set of Bloch dynamical equations which describe the nonequilibrium cotunneling in a convenient and compact way. These equations describe the time evolution of the spin variables of the QD explicitly in terms of the response and correlation functions of the free reservoir variables. This scheme not only provides analytical expressions for the relaxation and decoherence of the localized spin induced by cotunneling, but it also facilitates evaluations of the nonequilibrium magnetization, the charge current, and the spin current at arbitrary bias-voltage, magnetic field, and temperature. We find that all cotunneling events produce decoherence, but relaxation stems only from {em inelastic} spin-flip cotunneling processes. Moreover, our specific calculations show that cotunneling processes involving electron transfer (both spin-flip and non-spin-flip) contribute to charge current, while spin-flip cotunneling processes are required to produce a net spin current in the asymmetric coupling case. We also point out that under the influence of a nonzero magnetic field, spin-flip cotunneling is an energy-consuming process requiring a sufficiently strong external bias-voltage for activation, explaining the behavior of differential conductance at low temperature: in particular, the splitting of the zero-bias anomaly in the charge current and a broad zero-magnitude "window" of differential conductance for the spin current near zero-bias-voltage.
Source arXiv, cond-mat/0508278
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica