Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'487'895
Articles rated: 2609

29 March 2024
 
  » arxiv » cond-mat/0509361

 Article overview


Effect of charge state in nearby quantum dots on quantum Hall effect
K. Takehana ; T. Takamasu ; G. Kido ; H. Henini ;
Date 14 Sep 2005
Subject Mesoscopic Systems and Quantum Hall Effect | cond-mat.mes-hall
AbstractMagnetoresistance measurements have been performed on a gated two-dimensional electron system (2DES) separated by a thin barrier layer from a layer of InAs self-assembled quantum dots (QDs). Clear features of the quantum Hall effect were observed despite the proximity of the QDs layer to the 2DES. However, the magnetoresistance ($ ho_{xx}$) and Hall resistance ($ ho_{xy}$) are suppressed significantly in the magnetic field range of filling factor $ u<1$ when a positive voltage is applied to the front gate. The influence of the charge state in QDs was observed on the transport properties of the nearby 2DES only in the field range of $ u < 1$. It is proposed that the anomalous suppression of $ ho_{xx}$ and $ ho_{xy}$ is related to spin excitation, which is induced by spin-flip processes involving electrons in the QDs and the 2DES.
Source arXiv, cond-mat/0509361
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica