Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'488'730
Articles rated: 2609

29 March 2024
 
  » arxiv » cond-mat/0509665

 Article overview


Dynamics of Fluctuation Dominated Phase Ordering: Hard-core Passive Sliders on a Fluctuating Surface
Sakuntala Chatterjee ; Mustansir Barma ;
Date 26 Sep 2005
Subject Statistical Mechanics | cond-mat.stat-mech
AbstractWe study the dynamics of a system of hard-core particles sliding downwards on a one dimensional fluctuating interface, which in a special case can be mapped to the problem of a passive scalar advected by a Burgers fluid. Driven by the surface fluctuations, the particles show a tendency to cluster, but the hard-core interaction prevents collapse. We use numerical simulations to measure the auto-correlation function in steady state and in the aging regime, and space-time correlation functions in steady state. We have also calculated these quantities analytically in a related surface model. The steady state auto-correlation is a scaling function of t/L^z, where L is the system size and z the dynamic exponent. Starting from a finite intercept, the scaling function decays with a cusp, in the small argument limit. The finite value of the intercept indicates the existence of long range order in the system. The space-time correlation, which is a function of r/L and t/L^z, is non-monotonic in t for fixed r. The aging auto-correlation is a scaling function of t_1 and t_2 where t_1 is the waiting time and t_2 the time difference. This scaling function decays as a power law for t_2 gg t_1; for t_1 gg t_2, it decays with a cusp as in steady state. To reconcile the occurrence of strong fluctuations in the steady state with the fact of an ordered state, we measured the distribution function of the length of the largest cluster. This shows that fluctuations never destroy ordering, but rather the system meanders from one ordered configuration to another on a relatively rapid time scale.
Source arXiv, cond-mat/0509665
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica