Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

25 April 2024
 
  » arxiv » hep-ph/0509115

 Article overview



Fermion self-energies and pole masses at two-loop order in a general renormalizable theory with massless gauge bosons
Stephen P. Martin ;
Date 12 Sep 2005
AbstractI present the two-loop self-energy functions and pole masses for fermions in an arbitrary renormalizable field theory, in the approximation that vector bosons are treated as massless. The calculations are done simultaneously in the mass-independent ar{MS}, ar{DR}, and ar{DR}’ renormalization schemes, with a general covariant gauge fixing, and treating Majorana and Dirac fermions in a unified way. As examples, I discuss the two-loop strong interaction corrections to the gluino, neutralino, chargino, and quark pole masses in minimal supersymmetry. All other two-loop contributions to the fermion pole masses in softly broken supersymmetry can also be obtained as special cases of the results given here, neglecting only the electroweak symmetry breaking scale compared to larger mass scales in two-loop diagrams that involve W or Z bosons.
Source arXiv, hep-ph/0509115
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica