Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'500'096
Articles rated: 2609

19 April 2024
 
  » arxiv » hep-th/0510267

 Article overview


Quantum fields, cosmological constant and symmetry doubling
Hans-Thomas Elze ;
Date 31 Oct 2005
AbstractEnergy-parity has been introduced by Kaplan and Sundrum as a protective symmetry that suppresses matter contributions to the cosmological constant [KS05]. It is shown here that this symmetry, schematically Energy --> - Energy, arises in the Hilbert space representation of the classical phase space dynamics of matter. Consistently with energy-parity and gauge symmetry, we generalize the Liouville operator and allow a varying gauge coupling, as in "varying alpha" or dilaton models. In this model, classical matter fields can dynamically turn into quantum fields (Schroedinger picture), accompanied by a gauge symmetry change -- presently, U(1) --> U(1) x U(1). The transition between classical ensemble theory and quantum field theory is governed by the varying coupling, in terms of a one-parameter deformation of either limit. These corrections introduce diffusion and dissipation, leading to decoherence.
Source arXiv, hep-th/0510267
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica