Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'488'730
Articles rated: 2609

29 March 2024
 
  » arxiv » nucl-th/0509068

 Article overview


Role of low-$l$ component in deformed wave functions near the continuum threshold
Kenichi Yoshida ; Kouichi Hagino ;
Date 26 Sep 2005
Subject nucl-th
AbstractThe structure of deformed single-particle wave functions in the vicinity of zero energy limit is studied using a schematic model with a quadrupole deformed finite square-well potential. For this purpose, we expand the single-particle wave functions in multipoles and seek for the bound state and the Gamow resonance solutions. We find that, for the $K^{pi}=0^{+}$ states, where $K$ is the $z$-component of the orbital angular momentum, the probability of each multipole components in the deformed wave function is connected between the negative energy and the positive energy regions asymptotically, although it has a discontinuity around the threshold. This implies that the $K^{pi}=0^{+}$ resonant level exists physically unless the $l=0$ component is inherently large when extrapolated to the well bound region. The dependence of the multipole components on deformation is also discussed.
Source arXiv, nucl-th/0509068
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica