| | |
| | |
Stat |
Members: 2980 Articles: 2'031'867 Articles rated: 2577
19 January 2021 |
|
| | | |
|
Article overview
| |
|
On the Kashiwara-Vergne conjecture | A. Alekseev
; E. Meinrenken
; | Date: |
24 Jun 2005 | Abstract: | Let $G$ be a connected Lie group, with Lie algebra $g$. In 1977, Duflo constructed a homomorphism of $g$-modules $Duf: S(g) -> U(g)$, which restricts to an algebra isomorphism on invariants. Kashiwara and Vergne (1978) proposed a conjecture on the Campbell-Hausdorff series, which (among other things) extends the Duflo theorem to germs of bi-invariant distributions on the Lie group $G$. The main results of the present paper are as follows. (1) Using a recent result of Torossian (2002), we establish the Kashiwara-Vergne conjecture for any Lie group $G$. (2) We give a reformulation of the Kashiwara-Vergne property in terms of Lie algebra cohomology. As a direct corollary, one obtains the algebra isomorphism $H(g,S(g)) -> H(g,U(g))$, as well as a more general statement for distributions. | Source: | arXiv, math.QA/0506499 | Services: | Forum | Review | PDF | Favorites |
|
|
No review found.
Did you like this article?
Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.
browser CCBot/2.0 (https://commoncrawl.org/faq/)
|
| |
|
|
|
| News, job offers and information for researchers and scientists:
| |