Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'500'096
Articles rated: 2609

18 April 2024
 
  » arxiv » nlin.CD/0506045

 Article overview


Computed Chaos or Numerical Errors
Lun-Shin Yao ;
Date 22 Jun 2005
Subject Chaotic Dynamics; Classical Analysis and ODEs; Dynamical Systems; Numerical Analysis; Computational Physics; Fluid Dynamics | nlin.CD math.CA math.DS math.NA physics.comp-ph physics.flu-dyn
AbstractDiscrete numerical methods with finite time steps represent a practical technique to solve non-linear differential equations. This is particularly true for chaos since no analytical chaotic solution is known today. Using the Lorenz equations as an example it is demonstrated that computed results and their associated statistical properties are time-step dependent. There are two reasons for this behavior. First, it is well known that chaotic differential equations are unstable, and that any small error can be amplified exponentially near an unstable manifold. The more serious and less-known reason is that stable and unstable manifolds of singular points associated with differential equations can form virtual separatrices. The existence of a virtual separatrix presents the possibility of a computed trajectory actually jumping through it due to the finite time-steps of discrete numerical methods. Such behavior violates the uniqueness theory of differential equations and amplifies the numerical errors explosively. These reasons ensure that, even if the computed results are bounded; their independence of time-step should be established before accepting them as useful numerical approximations to the true solution of the differential equations. Due to the explosive amplification of numerical errors, no computed chaotic solution of differential equations that is independent of integration-time step has been found.
Source arXiv, nlin.CD/0506045
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica