Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

25 April 2024
 
  » arxiv » q-bio.GN/0501004

 Article overview



Binding properties and evolution of homodimers in protein-protein interaction networks
Iaroslav Ispolatov ; Anton Yuryev ; Ilya Mazo ; Sergei Maslov ;
Date 4 Dec 2004
Journal Nucleic Acids Research 2005 33(11):3629-3635
Subject Genomics; Molecular Networks; Disordered Systems and Neural Networks | q-bio.GN cond-mat.dis-nn q-bio.MN
AbstractWe demonstrate that Protein-Protein Interaction (PPI) networks in several eucaryotic organisms contain significantly more self-interacting proteins than expected if such homodimers randomly appeared in the course of the evolution. We also show that on average homodimers have twice as many interaction partners than non-self-interacting proteins. More specifically the likelihood of a protein to physically interact with itself was found to be proportional to the total number of its binding partners. These properties of dimers are are in agreement with a phenomenological model in which individual proteins differ from each other by the degree of their ``stickiness’’ or general propensity towards interaction with other proteins including oneself. A duplication of self-interacting proteins creates a pair of paralogous proteins interacting with each other. We show that such pairs occur more frequently than could be explained by pure chance alone. Similar to homodimers, proteins involved in heterodimers with their paralogs on average have twice as many interacting partners than the rest of the network. The likelihood of a pair of paralogous proteins to interact with each other was also shown to decrease with their sequence similarity. This all points to the conclusion that most of interactions between paralogs are inherited from ancestral homodimeric proteins, rather than established de novo after the duplication. We finally discuss possible implications of our empirical observations from functional and evolutionary standpoints.
Source arXiv, q-bio.GN/0501004
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica