Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'487'895
Articles rated: 2609

28 March 2024
 
  » arxiv » q-bio.SC/0502034

 Article overview


Kinetics of target site localization of a protein on DNA: a stochastic approach
M. Coppey ; O. Benichou ; R. Voituriez ; M. Moreau ;
Date 23 Feb 2005
Journal Biophys. J., September 1, 2004; 87(3): 1640 - 1649
Subject Subcellular Processes; Quantitative Methods; Statistical Mechanics | q-bio.SC cond-mat.stat-mech q-bio.QM
AbstractIt is widely recognized that the cleaving rate of a restriction enzyme on target DNA sequences is several orders of magnitude faster than the maximal one calculated from the diffusion--limited theory. It was therefore commonly assumed that the target site interaction of a restriction enzyme with DNA has to occur via two steps: one--dimensional diffusion along a DNA segment, and long--range jumps coming from association/dissociation events. We propose here a stochastic model for this reaction which comprises a series of 1D diffusions of a restriction enzyme on non-specific DNA sequences interrupted by 3D excursions in the solution until the target sequence is reached. This model provides an optimal finding strategy which explains the fast association rate. Modeling the excursions by uncorrelated random jumps, we recover the expression of the mean time required for target site association to occur given by Berg & al. cite{berg81}, and we explicitly give several physical quantities describing the stochastic pathway of the enzyme. For competitive target sites we calculate two quantities: processivity and preference. By comparing these theoretical expressions to recent experimental data obtained for extit{Eco}RV--DNA interaction, we quantify: i) the mean residence time per binding event of extit{Eco}RV on DNA for a representative 1D diffusion coefficient, ii) the average lengths of DNA scanned during the 1D diffusion (during one binding event and during the overall process), iii) the mean time and the mean number of visits needed to go from one target site to the other. Further, we evaluate the dynamics of DNA cleavage with regard to the probability for the restriction enzyme to perform another 1D diffusion on the same DNA substrate following a 3D excursion.
Source arXiv, q-bio.SC/0502034
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica