Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

25 April 2024
 
  » arxiv » q-bio.CB/0507021

 Article overview



Spontaneous polarization in eukaryotic gradient sensing: A mathematical model based on mutual inhibition of frontness and backness pathways
Atul Narang ;
Date 13 Jul 2005
Subject Cell Behavior | q-bio.CB
AbstractA key problem of eukaryotic cell motility is the signaling mechanism of chemoattractant gradient sensing. Recent experiments have revealed the molecular correlate of gradient sensing: Frontness molecules, such as PI3P and Rac, localize at the front end of the cell, and backness molecules, such as Rho and myosin II, accumulate at the back of the cell. Importantly, this frontness-backness polarization occurs "spontaneously" even if the cells are exposed to uniform chemoattractant profiles. The spontaneous polarization suggests that the gradient sensing machinery undergoes a Turing bifurcation. This has led to several classical activator-inhibitor and activator-substrate models which identify the frontness molecules with the activator. Conspicuously absent from these models is any accounting of the backness molecules. This stands in sharp contrast to experiments which show that the backness pathways inhibit the frontness pathways. Here, we formulate a model based on the mutually inhibitory interaction between the frontness and backness pathways. The model builds upon the mutual inhibition model proposed by Bourne and coworkers (Xu et al, Cell, 114, 201--214, 2003). We show that mutual inhibition alone, without the help of any positive feedback, can trigger spontaneous polarization of the frontness and backness pathways. The spatial distribution of the frontness and backness molecules in response to inhbition and activation of the frontness and backness pathways are consistent with those observed in experiments. Furthermore, depending on the parameter values, the model yields spatial distributions corresponding to chemoattraction (frontness pathways in-phase with the external gradient) and chemorepulsion (frontness pathways out-of-phase with the external gradient).
Source arXiv, q-bio.CB/0507021
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica