Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'487'895
Articles rated: 2609

29 March 2024
 
  » arxiv » cond-mat/9702022

 Article overview


Magnetism in the single-band Hubbard model
T. Herrmann ; W. Nolting ;
Date 3 Feb 1997
Journal J. Magn. Magn. Mater. 170, 253 (1997)
Subject Strongly Correlated Electrons | cond-mat.str-el
AbstractA self-consistent spectral density approach (SDA) is applied to the Hubbard model to investigate the possibility of spontaneous ferro- and antiferromagnetism. Starting point is a two-pole ansatz for the single-electron spectral density, the free parameter of which can be interpreted as energies and spectral weights of respective quasiparticle excitations. They are determined by fitting exactly calculated spectral moments. The resulting self-energy consists of a local and a non-local part. The higher correlation functions entering the spin-dependent local part can be expressed as functionals of the single-electron spectral density. Under certain conditions for the decisive model parameters (Coulomb interaction U, Bloch-bandwidth W, band occupation n, temperature T) the local part of the self-energy gives rise to a spin-dependent band shift, thus allowing for spontaneous band magnetism. As a function of temperature, second order phase transitions are found away from half filling, but close to half filling the system exhibits a tendency towards first order transitions. The non-local self-energy part is determined by use of proper two-particle spectral densities. Its main influence concerns a (possibly spin-dependent) narrowing of the quasiparticle bands with the tendency to stabilize magnetic solutions. The non-local self-energy part disappears in the limit of infinite dimensions. We present a full evaluation of the Hubbard model in terms of quasiparticle densities of states, quasiparticle dispersions, magnetic phase diagram, critical temperatures (Tc, Tn) as well as spin and particle correlation functions. Special attention is focused on the non-locality of the electronic self-energy, for which some rigorous limiting cases are worked out.
Source arXiv, cond-mat/9702022
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica