Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'585
Articles rated: 2609

24 April 2024
 
  » arxiv » cond-mat/9702209

 Article overview



The Fermi surface of underdoped high-T_c superconducting cuprates
Xi Dai ; Zhao-bin Su ; Lu Yu ;
Date 24 Feb 1997
Subject Strongly Correlated Electrons | cond-mat.str-el
AbstractThe coexistence of $pi$-flux state and d-wave RVB state is considered in this paper within the slave boson approach. A critical value of doping concentration $delta_c$ is found, below which the coexisting $pi$-flux and d-wave RVB state is favored in energy. The pseudo Fermi surface of spinons and the physical electron spectral function are calculated. A clear Fermi-level crossing is found along the (0,0) to ($pi$, $pi$) direction, but no such crossing is detected along the ($pi$, 0) to ($pi$, $pi$) direction. Also, an energy gap of d-wave symmetry appears at the Fermi level in our calculation. The above results are in agreement with the angle-resolved photoemission experiments which indicate at a d-wave pseudo-gap and a half-pocket-like Fermi surface in underdoped cuprates.
Source arXiv, cond-mat/9702209
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica