Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

25 April 2024
 
  » arxiv » cond-mat/9710222

 Article overview



Sound waves and the absence of Galilean invariance in flocks
Yuhai Tu ; John Toner ; Markus Ulm ;
Date 21 Oct 1997
Subject Statistical Mechanics; Soft Condensed Matter | cond-mat.stat-mech cond-mat.soft
AffiliationIBM T. J. Watson Research Center), John Toner and Markus Ulm (Department of Physics, Univ. of Oregon
AbstractWe study a model of flocking for a very large system (N=320,000) numerically. We find that in the long wavelength, long time limit, the fluctuations of the velocity and density fields are carried by propagating sound modes, whose dispersion and damping agree quantitatively with the predictions of our previous work using a continuum equation. We find that the sound velocity is anisotropic and characterized by its speed $c$ for propagation perpendicular to the mean velocity $$, $$ itself, and a third velocity $lambda $, arising explicitly from the lack of Galilean invariance in flocks.
Source arXiv, cond-mat/9710222
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica