Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

25 April 2024
 
  » arxiv » astro-ph/9802191

 Article overview



Dynamics of Circumstellar Disks
Andrew F. Nelson ; Willy Benz ; Fred C. Adams ; David Arnett ; ;
Date 13 Feb 1998
Journal Astrophys.J. 502 (1998) 342
Subject astro-ph
Affiliation University of Arizona, Universitaet Bern, University of Michigan
AbstractWe present a series of 2-dimensional hydrodynamic simulations of massive disks around protostars. We simulate the same physical problem using both a `Piecewise Parabolic Method’ (PPM) code and a `Smoothed Particle Hydrodynamic’ (SPH) code, and analyze their differences. The disks studied here range in mass from $0.05 M_*$ to $1.0 M_*$ and in initial minimum Toomre $Q$ value from 1.1 to 3.0. For this problem, the strengths of the codes overlap only in a limited fashion, but similarities exist in their predictions, including spiral arm pattern speeds and morphological features. Our results represent limiting cases (i.e. systems evolved isothermally) rather than true physical systems. Disks become active from the inner regions outward. From the earliest times, their evolution is a strongly dynamic process rather than a smooth progression toward eventual nonlinear behavior. We calculate approximate growth rates for the spiral patterns; the one-armed ($m=1$) spiral arm is not the fastest growing pattern of most disks. In our SPH simulations, disks with initial minimum $Q=1.5$ or lower break up into proto-binary or proto-planetary clumps. However, these simulations cannot follow the physics important for the flow and must be terminated before the system has completely evolved. At their termination, PPM simulations with similar initial conditions show uneven mass distributions within spiral arms, suggesting that clumping behavior might result if they were carried further. Concern that the point-like nature of SPH exaggerates clumping, that our representation of the gravitational potential in PPM is too coarse, and that our physics assumptions are too simple, suggest caution in interpretation of the clumping in both the disk and torus simulations.
Source arXiv, astro-ph/9802191
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica