Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

25 April 2024
 
  » arxiv » astro-ph/9807039

 Article overview



Boson Stars as Gravitational Lenses
Mariusz P. Dabrowski ; Franz E. Schunck ;
Date 3 Jul 1998
Journal Astrophys.J. 535 (2000) 316-324
Subject astro-ph gr-qc
AbstractWe discuss boson stars as possible gravitational lenses and study the lensing effect by these objects made of scalar particles. The mass and the size of a boson star may vary from an individual Newtonian object similar to the Sun to the general relativistic size and mass of a galaxy close to its Schwarzschild radius. We assume boson stars to be transparent which allows the light to pass through them though the light is gravitationally deflected. We assume boson stars of the mass $M = 10^{10}M_odot$ to be on non-cosmological distance from the observer. We discuss the lens equation for these stars as well as the details of magnification. We find that there are typically three images of a star but the deflection angles may vary from arcseconds to even degrees. There is one tangential critical curve (Einstein ring) and one radial critical curve for tangential and radial magnification, respectively. Moreover, the deflection angles for the light passing in the gravitational field of boson stars can be very large (even of the order of degrees) which reflects the fact they are very strong relativistic objects. We also propose a suitable formula for the lens equation for such large deflection angles, and with the reservation that large deflection angle images are highly demagnified but in the area of the tangential critical curve, their existence may help in observational detection of suitable lenses possessing characteristic features of boson stars which could also serve as a direct evidence for scalar fields in the universe.
Source arXiv, astro-ph/9807039
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica