Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'928
Articles rated: 2609

25 April 2024
 
  » arxiv » cond-mat/9801277

 Article overview



A liquid state theory that remains successful in the critical region
D. Pini ; G.Stell ; N.B. Wilding ;
Date 27 Dec 1997
Subject Statistical Mechanics | cond-mat.stat-mech
AbstractA thermodynamically self-consistent Ornstein-Zernike approximation (SCOZA) is applied to a fluid of spherical particles with a pair potential given by a hard-core repulsion and a Yukawa attractive tail $w(r)=-exp [-z(r-1)]/r$. This potential allows one to take advantage of the known analytical properties of the solution to the Ornstein-Zernike equation for the case in which the direct correlation function outside the repulsive core is given by a linear combination of two Yukawa tails and the radial distribution function $g(r)$ satisfies the exact core condition $g(r)=0$ for $r<1$. The predictions for the thermodynamics, the critical point, and the coexistence curve are compared here to other theories and to simulation results. In order to unambiguously assess the ability of the SCOZA to locate the critical point and the phase boundary of the system, a new set of simulations has also been performed. The method adopted combines Monte Carlo and finite-size scaling techniques and is especially adapted to deal with critical fluctuations and phase separation. It is found that the version of the SCOZA considered here provides very good overall thermodynamics and a remarkably accurate critical point and coexistence curve. For the interaction range considered here, given by $z=1.8$, the critical density and temperature predicted by the theory agree with the simulation results to about 0.6%.
Source arXiv, cond-mat/9801277
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica