Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 2176
Articles: 1'898'312
Articles rated: 2570

16 September 2019
 
  » arxiv » hep-th/9809125

  Article overview


Equivalence Principle, Planck Length and Quantum Hamilton-Jacobi Equation
Alon E. Faraggi ; Marco Matone ;
Date 17 Sep 1998
Journal Phys.Lett. B445 (1998) 77-81
Subject High Energy Physics - Theory; Mathematical Physics; Exactly Solvable and Integrable Systems | hep-th gr-qc hep-ph math-ph math.MP nlin.SI quant-ph solv-int
AbstractThe Quantum Stationary HJ Equation (QSHJE) that we derived from the equivalence principle, gives rise to initial conditions which cannot be seen in the Schroedinger equation. Existence of the classical limit leads to a dependence of the integration constant $ell=ell_1+iell_2$ on the Planck length. Solutions of the QSHJE provide a trajectory representation of quantum mechanics which, unlike Bohm’s theory, has a non-trivial action even for bound states and no wave guide is present. The quantum potential turns out to be an intrinsic potential energy of the particle which, similarly to the relativistic rest energy, is never vanishing.
Source arXiv, hep-th/9809125
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser CCBot/2.0 (https://commoncrawl.org/faq/)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2019 - Scimetrica