Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3643
Articles: 2'487'895
Articles rated: 2609

28 March 2024
 
  » arxiv » astro-ph/9901022

 Article overview


The Lyman-alpha forest of the QSO in the Hubble Deep Field South
S. Savaglio ; H. C. Ferguson ; T. M. Brown ; B. R. Espey ; K. C. Sahu ; S. A. Baum ; C. M. Carollo ; M. E. Kaiser ; M. Stiavelli ; R. E. Williams ; J. Wilson ;
Date 4 Dec 1998
Subject astro-ph
Affiliation1,4), R. E. Williams, J. Wilson (STScI Baltimore , Goddard Space Flight Center , Johns Hopkins University , Scuola Normale Superiore
AbstractThe quasar in the Hubble Deep Field South (HDFS), J2233-606 (z=2.23) has been exhaustively observed by ground based telescopes and by the STIS spectrograph on board the Hubble Space Telescope at low, medium and high resolution in the spectral interval from 1120 A to 10000 A. This very large base-line represents a unique opportunity to study in detail the distribution of clouds associated with emitting structures in the field of the quasar and in nearby fields already observed as part of the HDFS campaign. Here we report the main properties of the Lyman-alpha clouds in the intermediate redshift range 1.20-2.20, where our present knowledge has been complicated by the difficulty in producing good data. The number density is shown to be higher than what is expected by extrapolating the results from both lower and higher redshifts: 63pm8 lines with log N_{HI}geq14.0 are found (including metal systems) at =1.7, to be compared with ~40 lines predicted by extrapolating from previous studies. The redshift distribution of the Lyman-alpha clouds shows a region spanning z=1.383-1.460 (comoving size of 94 h^{-1}_{65} Mpc, Omega_o=1) with a low density of absorption lines; we detect 5 lines in this region, compared with the 16 expected from an average density along the line of sight. The two point correlation function shows a positive signal up to scales of about 3 h^{-1}_{65} Mpc and an amplitude that is larger for larger HI column densities. The average Doppler parameter is about 27 km/s, comparable to the mean value found at z > 3, thus casting doubts on the temperature evolution of the Lyman-alpha clouds.
Source arXiv, astro-ph/9901022
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser claudebot






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica