Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'501'711
Articles rated: 2609

20 April 2024
 
  » arxiv » astro-ph/9903227

 Article overview


The Triple Pulsar System PSR B1620-26 in M4
S. E. Thorsett ; Z. Arzoumanian ; F. Camilo ; A. G. Lyne ;
Date 15 Mar 1999
Subject astro-ph
Affiliation Princeton U., Cornell U., U. of Manchester, Jodrell Bank
AbstractThe millisecond pulsar PSR B1620-26, in the globular cluster M4, has a white dwarf companion in a half-year orbit. Anomalously large variations in the pulsar’s apparent spin-down rate have suggested the presence of a second companion in a much wider orbit. Using timing observations made on more than seven hundred days spanning eleven years, we confirm this anomalous timing behavior. We explicitly demonstrate, for the first time, that a timing model consisting of the sum of two non-interacting Keplerian orbits can account for the observed signal. Both circular and elliptical orbits are allowed, although highly eccentric orbits require improbable orbital geometries. The motion of the pulsar in the inner orbit is very nearly a Keplerian ellipse, but the tidal effects of the outer companion cause variations in the orbital elements. We have measured the change in the projected semi-major axis of the orbit, which is dominated by precession-driven changes in the orbital inclination. This measurement, along with limits on the rate of change of other orbital elements, can be used to significantly restrict the properties of the outer orbit. We find that the second companion most likely has a mass m~0.01 Msun --- it is almost certainly below the hydrogen burning limit (m<0.036 Msun, 95% confidence) --- and has a current distance from the binary of ~35 AU and orbital period of order one hundred years. Circular (and near-circular) orbits are allowed only if the pulsar magnetic field is ~3x10^9 G, an order of magnitude higher than a typical millisecond pulsar field strength. In this case, the companion has mass m~1.2x10^-3 Msun and orbital period ~62 years.
Source arXiv, astro-ph/9903227
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica