Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'503'724
Articles rated: 2609

23 April 2024
 
  » arxiv » astro-ph/9907228

 Article overview


Helium abundance in the most metal-deficient blue compact galaxies: I Zw 18 and SBS 0335-052
Y. I. Izotov ; F. H. Chaffee ; C. B. Foltz ; R. F. Green ; N. G. Guseva ; T. X. Thuan ;
Date 16 Jul 1999
Subject astro-ph
Affiliation Main Astronomical Observatory, Kiev, Ukraine, W. M. Keck Observatory, Hawaii, USA, Multiple Mirror Telescope Observatory, Tucson, USA, National Optical Astronomy Observatories, Tucson, USA, University of Virginia, Charlottesville, USA
AbstractWe present high-quality spectroscopic observations of the two most-metal deficient blue compact galaxies known, I Zw 18 and SBS 0335-052 to determine the helium abundance. The underlying stellar absorption strongly influences the observed intensities of He I emission lines in the brightest NW component of I Zw 18, and hence this component should not be used for primordial He abundance determination. The effect of underlying stellar absorption, though present, is much smaller in the SE component. Assuming all systematic uncertainties are negligible, the He mass fraction derived in this component is Y = 0.243+/-0.007. The high signal-to-noise ratio spectrum (> 100 in the continuum) of SBS 0335-052 allows us to measure the helium mass fraction with a precision better than 2% -- 5% in nine different regions along the slit. Assuming all systematic uncertainties are negligible, the weighted mean He mass fraction in SBS 0335-052 is Y = 0.2437+/-0.0014 when the three He I 4471, 5876 and 6678 emission lines are used, and is 0.2463+/-0.0015 when the He I 4471 emission line is excluded. The weighted mean helium mass fraction in the two most metal-deficient BCGs I Zw 18 and SBS 0335-052, Y=0.2462+/-0.0015, after correction for the stellar He production results in a primordial He mass fraction Yp = 0.2452+/-0.0015. The derived Yp leads to a baryon-to-photon ratio of (4.7+/-1.0) 10^{-10}, consistent with the values derived from the primordial D and 7Li abundances, and supporting the standard big bang nucleosynthesis theory. For the most consistent set of primordial D, 4He, and 7Li abundances we derive an equivalent number of light neutrino species 3.0+/-0.3 (95% C.L.).
Source arXiv, astro-ph/9907228
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica