Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'500'096
Articles rated: 2609

19 April 2024
 
  » arxiv » astro-ph/9908016

 Article overview


On the Nature of Soft X-ray Weak Quasi-Stellar Objects
W.N. Brandt ; A. Laor ; Beverley J. Wills ;
Date 2 Aug 1999
Subject astro-ph
AffiliationPenn State), A. Laor (Technion), Beverley J. Wills (UT Austin
AbstractRecent studies of QSOs with ROSAT suggest the existence of a significant population of Soft X-ray Weak QSOs (SXW QSOs) where the soft X-ray flux is ~ 10-30 times smaller than in typical QSOs. As a first step in a systematic study of these objects, we establish a well-defined sample of SXW QSOs which includes all alpha_ox<=-2 QSOs from the Boroson & Green (1992) sample of 87 BQS QSOs. SXW QSOs comprise about 11% of this optically selected QSO sample. From an analysis of CIV absorption in the 55 BG92 QSOs with available CIV data, we find a remarkably strong correlation between alpha_ox and the CIV absorption equivalent width. This correlation suggests that absorption is the primary cause of soft X-ray weakness in QSOs, and it reveals a continuum of absorption properties connecting unabsorbed QSOs, X-ray warm absorber QSOs, SXW QSOs and BAL QSOs. From a practical point of view, our correlation demonstrates that selection by soft X-ray weakness is an effective (>=80% successful) and observationally inexpensive way to find low-redshift QSOs with strong and interesting ultraviolet absorption. We have also identified several notable differences between the optical emission-line properties of SXW QSOs and those of the other BG92 QSOs. SXW QSOs show systematically low [O III] luminosities as well as distinctive H-beta profiles. They tend to lie toward the weak-[O III] end of BG92 eigenvector 1, as do many low-ionization BAL QSOs. Unabsorbed Seyferts and QSOs with similar values of eigenvector 1 have been suggested to have extreme values of a primary physical parameter, perhaps mass accretion rate relative to the Eddington rate (M-dot/M-dot_{Edd}). If these suggestions are correct, it is likely that SXW QSOs also tend to have generally high values of (M-dot/M-dot_{Edd}). (Abridged)
Source arXiv, astro-ph/9908016
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica