Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'504'585
Articles rated: 2609

25 April 2024
 
  » arxiv » astro-ph/9909222

 Article overview



The Extragalactic Distance Scale Key Project XXVII. A Derivation of the Hubble Constant Using the Fundamental Plane and Dn-Sigma Relations in Leo I, Virgo, and Fornax
Daniel D. Kelson ; Garth D. Illingworth ; John L. Tonry ; Wendy L. Freedman ; Robert C. Kennicutt ; Jr. ; Jeremy R. Mould ; John A. Graham ; John P. Huchra ; Lucas M. Macri ; Barry F. Madore ; Laura Ferrarese ; Brad K. Gibson ; Shoko Sakai ; Peter B. Stetson ; Edward A. Ajhar ; John P. Blakeslee ; Alan Dressler ; Holland C. Ford ; Shaun M.G. Hughes ; Kim M. Sebo ; Nancy A. Silbermann ;
Date 14 Sep 1999
Subject astro-ph
AbstractUsing published photometry and spectroscopy, we construct the fundamental plane and D_n-Sigma relations in Leo I, Virgo and Fornax. The published Cepheid P-L relations to spirals in these clusters fixes the relation between angular size and metric distance for both the fundamental plane and D_n-Sigma relations. Using the locally calibrated fundamental plane, we infer distances to a sample of clusters with a mean redshift of cz approx 6000 kms, and derive a value of H_0=78+- 5+- 9 km/s/Mpc (random, systematic) for the local expansion rate. This value includes a correction for depth effects in the Cepheid distances to the nearby clusters, which decreased the deduced value of the expansion rate by 5% +- 5%. If one further adopts the metallicity correction to the Cepheid PL relation, as derived by the Key Project, the value of the Hubble constant would decrease by a further 6%+- 4%. These two sources of systematic error, when combined with a +- 6% error due to the uncertainty in the distance to the Large Magellanic Cloud, a +- 4% error due to uncertainties in the WFPC2 calibration, and several small sources of uncertainty in the fundamental plane analysis, combine to yield a total systematic uncertainty of +- 11%. We find that the values obtained using either the CMB, or a flow-field model, for the reference frame of the distant clusters, agree to within 1%. The Dn-Sigma relation also produces similar results, as expected from the correlated nature of the two scaling relations. A complete discussion of the sources of random and systematic error in this determination of the Hubble constant is also given, in order to facilitate comparison with the other secondary indicators being used by the Key Project.
Source arXiv, astro-ph/9909222
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica