Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'501'711
Articles rated: 2609

20 April 2024
 
  » arxiv » astro-ph/9911245

 Article overview


A small source in Q2237+0305 ?
J. S. B. Wyithe ; R. L. Webster ; E. L. Turner ;
Date 15 Nov 1999
Journal Mon.Not.Roy.Astron.Soc. 318 (2000) 762
Subject astro-ph
AbstractMicrolensing in Q2237+0305 between 1985 and 1995 (eg. Irwin et al. 1989; Corrigan et al. 1991; Ostensen et al. 1996) has been interpreted in two different ways; as microlensing by stellar mass objects of a continuum source having dimensions significantly smaller than the microlens Einstein radius (ER) (eg. Wambsganss, Paczynski & Schneider 1990; Rauch & Blandford 1991), and as microlensing by very low mass objects of a source as large as 5 ER (Refsdal & Stabell 1993; Haugan 1996). In this paper we present evidence in favour of a small source. Limits on the source size (in units of ER) are obtained from the combination of limits on the number of microlens Einstein radii crossed by the source during the monitoring period with two separate light-curve features. Firstly, recently published monitoring data (Wozniak et al. 2000; OGLE web page) show large variations (~0.8-1.5 magnitudes) between image brightnesses over a period of 700 days or ~15% of the monitoring period. Secondly, the 1988 peak in the image A light-curve had a duration that is a small fraction (<0.02) of the monitoring period. Such rapid microlensing rises and short microlensing peaks only occur for small sources. We find that the observed large-rapid variation limits the source size to be <0.2 ER (95% confidence). The width of the light-curve peak provides a stronger constraint of <0.02 ER (99% confidence). The Einstein radius (projected into the source plane) of the average microlens mass (m) in Q2237+0305 is ER ~ 10^{17}sqrt{m} cm. The interpretation that stars are responsible for microlensing in Q2237+0305 therefore results in limits on the continuum source size that are consistent with current accretion disc theory.
Source arXiv, astro-ph/9911245
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica