Science-advisor
REGISTER info/FAQ
Login
username
password
     
forgot password?
register here
 
Research articles
  search articles
  reviews guidelines
  reviews
  articles index
My Pages
my alerts
  my messages
  my reviews
  my favorites
 
 
Stat
Members: 3645
Articles: 2'501'711
Articles rated: 2609

19 April 2024
 
  » arxiv » astro-ph/9912467

 Article overview


Optimal softening for force calculations in collisionless N-body simulations
E. Athanassoula ; E. Fady ; J.-C. Lambert ; A. Bosma ;
Date 22 Dec 1999
Subject astro-ph
AbstractIn N-body simulations the force calculated between particles representing a given mass distribution is usually softened, to diminish the effect of graininess. In this paper we study the effect of such a smoothing, with the aim of finding an optimal value of the softening parameter. As already shown by Merritt (1996), for too small a softening the estimates of the forces will be too noisy, while for too large a softening the force estimates are systematically misrepresented. In between there is an optimal softening, for which the forces in the configuration approach best the true forces. The value of this optimal softening depends both on the mass distribution and on the number of particles used to represent it. For higher number of particles the optimal softening is smaller. More concentrated mass distributions necessitate smaller softening, but the softened forces are never as good an approximation of the true forces as for not centrally concentrated configurations. We give good estimates of the optimal softening for homogeneous spheres, Plummer spheres, and Dehnen spheres. We also give a rough estimate of this quantity for other mass distributions, based on the harmonic mean distance to the $k$th neighbour ($k$ = 1, .., 12), the mean being taken over all particles in the configuration. Comparing homogeneous Ferrers ellipsoids of different shapes we show that the axial ratios do not influence the value of the optimal softening. Finally we compare two different types of softening, a spline softening (Hernquist & Katz 1989) and a generalisation of the standard Plummer softening to higher values of the exponent. We find that the spline softening fares roughly as well as the higher powers of the power-law softening and both give a better representation of the forces than the standard Plummer softening.
Source arXiv, astro-ph/9912467
Services Forum | Review | PDF | Favorites   
 
Visitor rating: did you like this article? no 1   2   3   4   5   yes

No review found.
 Did you like this article?

This article or document is ...
important:
of broad interest:
readable:
new:
correct:
Global appreciation:

  Note: answers to reviews or questions about the article must be posted in the forum section.
Authors are not allowed to review their own article. They can use the forum section.

browser Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com)






ScienXe.org
» my Online CV
» Free


News, job offers and information for researchers and scientists:
home  |  contact  |  terms of use  |  sitemap
Copyright © 2005-2024 - Scimetrica